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Abstract

We develop the geometrical formulation of classical mechanics. We begin by re-

viewing the Lagrangian and Hamiltonian mechanics of particles in the language of

bundles and symplectic geometry. We then describe field theories in the same vein,

paying special attention to boundary conditions. Our goal is the manifestly covariant

construction of a phase space for classical relativistic field theories; the fruits of our

labor are found in the application of the methods we develop to the general theory

of relativity. Our purpose is to “finally” explain how classical physics works, and to

understand how to geometrize the theory of spacetime geometry itself.
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1 PARTICLE MECHANICS

0 Introduction

A single field permeates space; it fluctuates, untethered, through the vast emptiness of the

cosmos. The faintest shadow of a smile fills the void: somewhere far away, a student has just

caught their first glimpse of Hamilton’s equations in all their symplectic glory. At first dimly,

then all at once with blinding clarity, the entire cotangent bundle reveals itself, adorned with

forms and vector fields ethereal; the Hamiltonian flow revolves majestically, wheels within

wheels; and the sheer beauty of the canonical invariants. . . The student sighs deeply, feels an

overwhelming sense of contentment and peace, and is, at last, truly happy.

This is not the story of the student, who—unlike the field—is merely an idealization

dreamed up in the twisted minds of physicists. This is the story of the field.

Discussions of the dynamics of relativistic fields often introduce the Hamiltonian formal-

ism quickly after the Lagrangian one, and immediately set off doing computations. While

the Lagrangian description is always written down in a manifestly covariant way, the Hamil-

tonian viewpoint encounters problems because the definitions H = πφ̇ − L and π = ∂L
∂φ̇

explicitly pick out a preferred time coordinate and slicing, and none of the computations

that follow look very covariant. But the ideas behind Hamiltonian mechanics are too simple

and too elegant not to be treated correctly, “without the dots,” and in what follows we will

present at least part of a proper attempt to do things right. The resulting set of techniques,

called covariant phase space (CPS) methods, give a transparent and elegant way to under-

stand classical dynamics. In particular, CPS provides a geometrical perspective on general

relativity, which is the classical field theory of the world’s underlying geometry.

Motivated by the mantra that geometry should be understood geometrically, we will begin

(section 1) by reformulating traditional particle mechanics in the language of symplectic

geometry. We will then (section 2) spend some time strategizing about how to upgrade this

machinery to the case of fields, develop a general plan of attack, and try the plan out. We will

expend most of our effort (section 3) in making the transition from Lagrangian field theory to

a Hamiltonian point of view. Much care will be taken in formulating the variational problem

upon which everything is based, and we will pay special attention to boundary terms. These

boundary terms will return (section 4) in a crucial way when we apply CPS to the general

theory of relativity and finally see the full power of the formalism.

1 Particle Mechanics

1.1 Philosophy

In kindergarten, we learn that one may use the Euler-Lagrange equations to write down

the time evolution of a mechanical system; very often this is all we need to know, and

kindergarten is as far as we get. But there is a more subtle idea: one can compare where the

system is at a given instant to where it is going. The resulting axes of “being and becoming”
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1.2 Lagrangian Mechanics 1 PARTICLE MECHANICS

(hereafter: position q and momentum p) define what we call phase space; in my opinion, the

phase-space trajectory of a system gives a more distilled understanding of its dynamics.

Of course, after kindergarten we all go to high school, where we learn about the Hamil-

tonian H and the Poisson bracket {·, ·}. Packaging the positions and momenta into a set of

unified coordinates called ζ, we can rewrite the equations of dynamics as ζ̇ = {ζ,H}. This

first-order differential equation gives us an inkling that the trajectories ζ(t) are really the

integral curves of some “guiding” vector field, illustrated below for the harmonic oscillator.

We will call this the Hamiltonian vector field, and below we develop more concretely how it

actually performs the phase-space evolution of any mechanical system.

1.2 Lagrangian Mechanics

Let M be the universe, a smooth manifold of dimension n. To begin, we will imagine M = Rn

to be space. We consider a single particle whose motion traces out a curve q : R −→ M ,

so that its position at any t ∈ R is a point q(t) ∈ M . If the particle is at q ∈ M , we can

use a set of n local coordinates1 qi to describe q. The particle’s velocity is a tangent vector

(q, v) in the tangent space TqM to M at q. Given coordinates qi of q, TqM has a natural

basis { ∂
∂qi

= ∂i} in which to decompose v = vj∂j. Now a pedantic but important aside: note

that the numbers vj are merely the coefficients at ∂i needed to specify an arbitrary tangent

vector at a point q ∈ M , and can be chosen independently of the point’s coordinates qi to

yield different tangent vectors. Only when the vector lies tangent to a given curve, which

we might call q(t), do the components vj actually equal the time derivatives q̇j(t) of q(t).

1Henceforth, we use points and their coordinates interchangeably. It is not strictly true that qi ∈ Rn lies
in M , but anyone upset about such things can direct their complaints to the nearest math department.
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1.3 The Hamiltonian Formalism 1 PARTICLE MECHANICS

Due to a disastrous historical misunderstanding, the symbol q̇j was kept as the name of the

coefficient vj, leaving many students to wonder why q and q̇ are treated independently in

mechanics courses. We will use the standard notation q̇j instead of vj, but one should keep

in mind that q̇j = q̇j(t) only when the vector being described is the velocity of q(t) itself.

One often proclaims2 that a particle’s position q0 and velocity q̇0 at one instant suffice

to determine its entire motion q(t); one concludes that q(t) is determined by a second-order

ODE, and then writes down Newton’s law before leaving in a hurry to see if there are still

cookies at department teatime. But at teatime, one realizes that q0 and q̇0 determine not only

q(t), but also q̇(t). Indeed, q(t) and q̇(t) are co-constitutive and effect each other’s dynamics,

so our real interest is in the combined trajectory of positions and velocities (q(t), q̇(t)) ⊂ TM .

In this new setting, Lagrangian mechanics basically follows as usual. We quantify local

deviations of (q(t), q̇(t)) from their physical paths by a smooth function L : TM −→ R,

the Lagrangian of the system. The action integral S =
∫ tf
ti

dt L(q(t), q̇(t)) adds up local

contributions to L along a path, and we require it to be stationary on physical paths:

δS =

∫ tf

ti

dt

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi +

[
∂L

∂q̇i
δqi
]∣∣∣∣tf

ti

= 0 =⇒ ∂L

∂qi
=

d

dt

(
∂L

∂q̇i

)
. (1.1)

Here the techniques of variational calculus have been upgraded: we consider q 7→ qi(t) as

scalar functions on M ; these are zero-forms, and the δqi are their exterior derivatives. As

we will see later, integration by parts becomes an application of Stokes’s theorem. We

have assumed that δqi vanishes at ti and tf ; this assumption amounts to an imposition of

boundary conditions that renders the variational problem δS = 0 well-posed. We understand

∂L/∂qi and ∂L/∂q̇ as the partials of L with respect to the base and fiber coordinates of

TM , respectively. Examples of interesting Lagrangians abound, as do generalizations that

toy with the configuration manifold M ; moreover, there are powerful reformulations of the

variational principle in terms of geodesic spray. But let us restrain ourselves.

1.3 The Hamiltonian Formalism

In Hamiltonian mechanics, we replace the velocities q̇ by their canonical momenta, defined

by p ≡ ∂L/∂q̇ = (∂/∂q̇)(L) = dL(∂/∂q̇). Here we have written p as the action of the tangent

basis vector ∂/∂q̇ on L and recognized that p is a function of the tangent vectors q̇. In other

words, p is a one-form on M and is thus an element of the cotangent bundle T ∗M . In

coordinates, its action on q̇ ∈ TM is given by

p(q̇) =
(
pi dq

i
)(
q̇j

∂

∂qj

)
= piq

j dqi
(
∂

∂qj

)
= piq̇

i. (1.2)

The key realization here is the same one that motivates Lagrangian mechanics: as the

point traces out a path q(t), the changing velocity vector q̇(t) forces p = ∂L
∂q̇

to change in

2This is an experimental fact; however, the Ostrogradsky instability gives a partial theoretical explanation.
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1.3 The Hamiltonian Formalism 1 PARTICLE MECHANICS

time as well. Thus we might say that the physical path on M lifts to a trajectory (q(t), p(t))

in T ∗M ≡ M, which we will hereafter call phase space. The Hamiltonian vector field X

from earlier is then just the velocity vector tangent to this phase-space trajectory; we write

X ∈ TM. Hamilton’s equations are nothing more than the flow by X, and M itself is

nothing more than the set of all possible integral curves of X, i.e. the space of solutions to

the equations of motion. This is a devastatingly simple and concise description of classical

mechanics, and we will do well to develop it further.

To make progress, we will construct the canonical one-form. The basic idea is that

there is a natural way for the Hamiltonian vector field X to “eat itself.” The natu-

ral projection π : M = T ∗M −→ M sends (q, p) 7→ q; correspondingly, its linearization

dπ : TM = T (T ∗M) −→ TM sends tangent vectors on M attached at (q, p) to tangent

vectors on M attached at q. What would happen if we fed one of the resulting vectors

dπ(X) ∈ TM into the one-form p where the original vector X was attached? This is a

coordinate-free construction that begins with a vector X ∈ TM and uses one-forms on M
to yield a number θ(X) ≡ p(dπ(X)). The object θ is therefore a one-form on M; we call

it the canonical or tautological one-form, or the symplectic potential. If X happens to be

Hamiltonian, then dπ sends it to the velocity q̇ tangent to q(t). In coordinates, θ(X) = pq̇

recovers an expression ubiquitous in mechanics; we have finally seen where it comes from!
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1.3 The Hamiltonian Formalism 1 PARTICLE MECHANICS

Hamiltonian mechanics is usually set up using a function H rather than a vector field X:

how do we get the former from the latter? It is easier to first convert X into a one-form,

since vectors and one-forms are dual, and thence to a function. We thus seek an isomorphism

TM −→ T ∗M, and in fact such an isomorphism is given by the two-form ω ≡ dθ. Two-

forms have two slots for vectors; sticking X into the first slot leaves the other slot unfilled, so

the object iXω is a one-form, as desired. That iXω is unique to X can be seen in coordinates:

θ = pαdqα ∈ Ω1(M) =⇒ ω = dθ = dpα ∧ dqα ∈ Ω2(M). (1.3)

One shows that ω is nondegenerate by proving that its kernel is trivial: iXω does not vanish

identically if X 6= 0. (The proof observes that the matrix of ω has nonzero determinant.)

Note also that ω is closed, since dω = d(dθ) = 0. Any closed, nondegenerate two-form ω is

called a symplectic form, and its existence of is the key to Hamiltonian mechanics on M.

With some more work, it can proven that iXω is not only unique to X, but is also

exact: it can be expressed as a differential dH, where the function H is the Hamiltonian! In

coordinates, we find that the equation iXHω = dH expresses Hamilton’s equations:

dH =

(
∂H

∂qα
,
∂H

∂pα

)
=⇒ XH =

(
∂H

∂pα
, −∂H

∂qα

)
!

= (q̇, ṗ). (1.4)

Mathematical treatments of this subject usually reverse the story above.3 They begin

with a function H and compute its differential dH. Then ω, being nondegenerate, has an

inverse4 that yields a unique XH . In this sense a vector field is defined to be Hamiltonian if its

contraction with the symplectic form is exact, while one whose contraction is merely closed

is called a symplectic vector field. These generate symplectomorphisms, or what physicists

call canonical transformations. All Hamiltonian vector fields are symplectic, and viewing

them as such is what Hamilton-Jacobi theory does in seeing Hamiltonian evolution as a type

of canonical transformation. Some intuition might help here: H gives the total energy of

a system. Since time evolution conserves energy, XH should lie orthogonal to the gradient

dH. This is exactly what the calculation ω(XH , XH) = dH(XH) = 0 encodes.

This formalism may seem heavy-handed, but it begets spectacularly concise and trans-

parent computations. For instance, here is a one-line proof of Liouville’s theorem:

X symplectic =⇒ LXω = diXω + iXdω = d(closed) + iX(0) = 0 =⇒ LXHωn = 0. (1.5)

One way to understand this is by analogy to electromagnetism. Both the vector potential

A and the symplectic potential θ are one-forms, and their exterior derivatives F = dA and

ω = dθ may be thought of as a “field strength” or “gauge curvature.” In some sense, ω

3If the discussion above has been slightly artificial, it is because I have introduced symplectic geometry
inside out. Mathematicians are therefore advised to read this section while standing on their heads.

4In coordinates, one notices that this inverse is the Poisson bracket! The “algebraic” view from {·, ·} and
H, developed in physics courses, is equivalent to the “geometric” view from ω and XH , developed here.

6



2 PLAN OF ATTACK

curves phase space by generating the vector fields that guide particles along their winding

paths. As to the proof, we have taken the Lie derivative5 of ω using Cartan’s magic formula

LX = diX + iXd. The equation LXHω = 0 may then be understood in analogy to the

Killing equation LXg = 0: the symplectic form (respectively, the metric) is conserved under

Hamiltonian flow (resp. flow by isometries). Since ω ∈ Ω2(M2n) is nondegenerate, the top

form ωn is nonvanishing and is therefore a volume form. Liouville’s theorem states that the

symplectic structure of M conserves ω, and therefore leaves phase-space volume invariant!

The main takeaway here is that the Hamiltonian vector field XH , which directly performs

physics on M, is the main hero of our story. XH is supported by its sidekick ω, whose

existence guarantees Hamiltonian mechanics on M. As a consequence, we can dispense

entirely with cotangent bundles: it is enough for phase space to be a symplectic manifold.

2 Plan of Attack

Before we discuss symplectic geometry for field theories, we caution that fields are quite

different from particles. Traditionally, fields are introduced as continuum generalizations of

many-particle systems; the value of a field φ(x) is the density of particles at x. But behind

this scaffolding, the mathematical definitions tell a different story. A particle’s trajectory

q : R −→ M takes in a single parameter (e.g. proper time) and produces positions in M .

Meanwhile, a field takes all of the spacetime coordinates as parameters, and its output lies

in a distinct manifold C of possible field values: C = R for a real scalar, and so on.

It is natural to unify spacetime and field values in a C-bundle of field histories over

M . The concept of such field bundles leads naturally to the study of jet bundles, which

in turn are just thicc tangent bundles.6 The action principle then has to account for both

“horizontal” and “vertical” variations in M and C respectively. These are packaged neatly

in a variational bicomplex, which we will not construct; however, we cannot do without its

basic ingredients. We distinguish between the exterior derivative δ on C (to be thought

of as a field variation) and the exterior derivative d on M (to be thought of as the usual

differential). Most of the objects we deal with will be forms of different ranks on M and C.

Heeding this warning, we will follow Harlow and Wu (2019) in constructing a symplectic

form and Hamiltonian on the phase space of a field theory. We will follow six steps:

1. The configuration space C̃ is the set of fields φa satisfying the boundary conditions, on

which we will elaborate. Classically, this is the space in which we consider local varia-

tions; quantum-mechanically, this is the space on which we compute path integrals.

5In Soviet Russia, LX was called the “fisherman’s derivative.” The idea was that differential-geometric
objects flow down a river, while a fisherman sits on the bank and differentiates them as they go by.

6Tangent bundles are the natural setting for ODEs, which are geometrized in the notion of “geodesic
spray.” One introduces jet bundles when there are more coordinates with respect to which to be tangent.
In this case one speaks of the “prolongation” of jet bundles to geometrize PDEs.
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2 PLAN OF ATTACK

2. The pre-phase space P̃ is the set of fields φa for which the equations of motion hold, in

line with our description of M as the set of phase-space trajectories. This definition

does not pick out a preferred time slice, nor does it choose (φ, π)-style coordinates.

3. We will construct the pre-symplectic form Ω̃. We will think highly of ourselves and

nod pretentiously, only to be promptly removed from our pedestal. Ω̃ will be closed

by fiat, but it will be degenerate, and will not be an isomorphism as described above.

4. The problem is gauge redundancy: two nearby field configurations φ, φ′ ∈ P̃ may

represent the same physical state. A vector Z ∈ T P̃ pointing from φ to φ′ is a

“degeneracy direction” in P̃ , and Hamiltonian evolution by Z is “fake” in the sense

that iZΩ̃ = 0. We call such Z zero modes of Ω̃, and together they form a Lie algebra

Z that generates a group G ⊂ Diff(P̃) of physical equivalences or gauge symmetries.

5. We perform symplectic reduction to get rid of the zero modes, schematically writing

P = P̃/G and Ω̃/G. The first expression is well-defined as written: we “glue” all

physically equivalent field configurations to each other along the degeneracy directions

Z.7 The second expression “does the same thing” to the action of Ω on vector fields,

but first technically requires us to quotient the algebra of vector fields TP by G.

6. Having obtained a true phase space and symplectic form for fields, it is straightforward

to construct a Hamiltonian for the theory from a Hamiltonian vector field. Neverthe-

less, there are extra subtleties due to the difference between spacetime and field space.

Let us illustrate step (3), which will occupy most of our time, in the case of particle

mechanics on a spatial manifold. We continue a computation we began in §1.2:

δS =

∫ tf

ti

dt

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
δq +

[
∂L

∂q̇
δq

]∣∣∣∣tf
ti

=

∫
M

(E dt) δq +

∫
∂M

(p δq). (2.1)

We package the equations of motion as a one-form E dt and keep the oft-forgotten boundary

term. We write the same expression pretentiously: M is the manifold of parameters, here

just the time interval [ti, tf ], taken in by the (0 + 1)-dimensional “field” q. Evaluation at the

endpoints ti and tf is really an integral over the boundary of the parameter manifold; the

boundary integrand is the symplectic potential from above! By Stokes’s theorem, we have∫
∂M

(p δq) =

∫
∂M

θ =

∫
M

ω. (2.2)

7This construction was brought to you by the Frobenius gang. The closure of the Zs under the Lie bracket
guarantees that Z generates a distribution on P̃ spanned by the zero modes. By Frobenius’s theorem, this
foliates P̃ into gauge orbits, along which the gluing proceeds and whereby the quotient is well-defined.
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3 COVARIANT PHASE SPACE

Thanks to Stokes’s theorem and the fact that spacetime is the configuration space for parti-

cles, the symplectic form can be found hiding in the action principle defining mechanics. As

we will find shortly, essentially the same procedure will work for fields, with a few differences.

3 Covariant Phase Space

After much procrastination and moralizing, we will construct the symplectic form on the

phase space of a relativistic classical field theory. We’ll begin by writing down the action. It

will be useful to view the Lagrangian as a top-dimensional form on M , suitable for integration

on spacetime, instead of as a scalar function; the difference is immaterial by Poincarè duality.

We write L = L ε
M

, where ε
M

is the standard volume form on M (we restrict to orientable

spacetimes), and where L : C̃ −→ R carries the same information as L.8 The action is

S =

∫
M

L(φ, χ) +

∫
∂M

`(φ, χ). (3.1)

We write φ for all of the dynamical fields, i.e. those whose variations and equations of motion

interest us, and χ for all of the non-dynamical or background fields, e.g. a fixed background

metric. We allow M to have boundary and include ` in the action. If ∂M ⊂M , the second

term is technically included in the first as its pullback to ∂M , but we want to see explicitly

what happens to various boundary terms. We will henceforth abuse notation in this way.

3.1 Boundary Palooza

�

Näıvely, we would set δS = 0. But here we must be careful: every well-posed vari-

ational problem comes with boundary conditions. As shown below, we decompose

∂M = ΓtΣ−tΣ+ into spatial (Γ) and temporal (Σ±) boundaries. We fix the value

of φ or its derivatives on Γ (this specifies the theory itself), but not on Σ± (this is

more akin to preparing a state within the theory).9 Thus the action is only station-

ary up to a term defined on Σ± = Σ+ − Σ− (the minus sign denotes orientation),

where a “flux of δS” is permitted. Let us see this in action (pun intended):

S =

∫
M

L+

∫
∂M

` =⇒ δS =

∫
M

(E ∧ δφ) +

∫
∂M

(θ + δ`) =

=

∫
M

(E ∧ δφ) +

∫
Σ±

(θ + δ`) +

∫
Γ

(θ + δ`) =⇒ (3.2)

0 =

∫
M

(E ∧ δφ) =

∫
Γ

(θ + δ`) =⇒ E = 0, (θ + δ`)
∣∣∣
Γ

= dC.

8Notice that the distinctions between TM and T ∗M have vanished in the absence of coordinates: there
is only one true configuration space, and phase space sits inside it, not over it as in the case of particles.

9This is a feature of Lorentz signature, which makes many dynamical equations of motion wavelike. These
hyperbolic PDEs solve a Cauchy problem, whose well-posedness requires the boundary conditions above.
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3.2 The Symplectic Form 3 COVARIANT PHASE SPACE

The calculation begins as in §2: we inte-

grate by parts, isolate the equations of motion

(labeled E), and pick up a boundary term

to become part of the symplectic potential.

There is also the variation δ`. We split up the

boundary as described above and require the

first and third terms to vanish in accordance

with our variational principle. The vanishing

of the first term yields the equations of mo-

tion, which is a good sign. We might think

to set (θ + δ`)
∣∣
Γ

= 0 to make the third term

vanish, but this is too strong: if (θ + δ`)
∣∣
Γ

is

merely exact, then by Stokes’s theorem∫
Γ

(θ + δ`) =

∫
Γ

dC =

∫
∂Γ

C, (3.3)

and since ∂Γ ⊂ Σ±, a contribution to δS from

C is allowed by our boundary conditions!

3.2 The Symplectic Form

Now we apply a standard trick in physics: identify a quantity that näıvely vanishes, but which

upon closer inspection is nonzero, and give it a fancy name. We obtain such a quantity by

moving dC to the left-hand side in (θ + δ`)
∣∣
Γ

= dC:

Ψ ≡ θ + δ`− dC =⇒ Ψ
∣∣∣
Γ

= (θ + δ`− dC)
∣∣∣
Γ

= 0. (3.4)

Ψ is our old friend θ, dressed up with the proper boundary terms: it is the symplectic

potential. We then hurriedly define the pre-symplectic current10 and pre-symplectic form:

ω ≡ δΨ
∣∣∣
P̃

= δ(θ − dC)
∣∣∣
P̃
, Ω̃ ≡

∫
Σ

ω, (3.5)

where we have used δ2 = 0 to eliminate `, and where Σ is a Cauchy surface.

Several comments, in no particular order, are by now long overdue:

• All objects in sight are differential forms on both M and C̃, where they may have differ-

ent ranks. The table below summarizes their names and natures. Each form’s “natural

10Physicists use “current” for densities whose integral is some kind of charge, and for objects dual to or
sourcing some kind of potential. Here, different authors throw around a profusion of terms, some even calling
ω a “symplectic potential current.” Lacking a philosophy degree, I have chosen the most common name.
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3.2 The Symplectic Form 3 COVARIANT PHASE SPACE

habitat” is its domain of definition, but they all have arbitrary smooth extensions into

M . Such is the nature of globalization in today’s compact but connected world.

Form Habitat Rank on M Rank on C̃
L M d 0

` ∂M d− 1 0

θ ∂M d− 1 1

C Γ d− 2 1

ω M d− 1 2

• Both Ψ and ω are “pinned down” at Γ, where they vanish by construction. C was

defined only on Γ, so we extend it to M ; however, only its value on Γ is physical.

• While it looks like ω does not depend on `, it does so indirectly through C: the

equation (θ + δ`)
∣∣
Γ

= dC gives a consistency condition governing the kinds of boundary

Lagrangians allowed by the boundary conditions.

• ω is biclosed, meaning that δω = dω = 0. The first equality is obvious from the

definition ω = δΨ, while the second follows from a one-line calculation:

dω = dδ(θ − dC) = −δdθ = −δ(δL− E ∧ δφ) = δE ∧ δφ = 0. (3.6)

Here we have used that δ and d anticommute (by definition), used d2 = 0 to get rid of

C, and further substituted δL = E ∧ δφ + dθ11 in order to use δ2 to get rid of L. In

the last step, we recall that ω is really the restriction of Ψ to P̃ , where E ≡ 0.

• The integration over Σ to define Ω̃ is a technicality that “undoes” the fact that ω is

a (d − 1)-form on M . In fact Ω̃ is independent of Σ; to see this, integrate ω over

two Cauchy surfaces Σ,Σ′ as shown above. Let M ′ and Γ′ be the regions of M and Γ

between Σ and Σ′. Then by Stokes’s theorem and the previous properties,∫
Σ−Σ′

ω =

∫
M ′

dω −
∫

Γ′
dω =

∫
M ′

0−
∫

Γ′
d(0) = 0. (3.7)

• One should understand the symplectic potential Ψ as an analog of the first variation

δS, and the pre-symplectic current ω as an analog of the second variation “δ2S.”

Let us summarize our current state of affairs. Starting from a well-posed variational

problem, we have constrained the boundary terms and constructed a pre-symplectic form Ω̃

by differentiating the symplectic potential θ, up to a total spacetime derivative dC. After the

quotient procedure described above, we obtain a bona fide phase space and a true symplectic

form: we will henceforth assume that this procedure has been carried out.

11This is an example of integration by parts but without the integration, also called the product rule.
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3.3 The Hamiltonian 3 COVARIANT PHASE SPACE

3.3 The Hamiltonian

All that remains is to specify a Hamiltonian vector field and function on phase space. Tech-

nically, we are free to specify any Hamiltonian function at all and be done, but this is rather

reductionist. One might try to do better by developing a covariant notion of the Legendre

transform, but while this may be possible, it is unclear how to treat both L and `. As we

will see, an approach based on spacetime symmetries will recover the correct form and yield

additional physical insight that the Legendre transform would have missed.

In flat spacetime, the Hamiltonian generates time evolution and can be thought of as

a “time charge.” Moreover, there is a whole stress tensor’s worth of charges that generate

spacetime translations, rotations, and boosts. Our covariant framework will treat all of these

equally, producing a “Hamiltonian,”12 or more properly a diffeomorphism Noether charge for

each one. This is tricky: if ξ ∈ TM generates a diffeomorphism of M , the dynamical fields

φ will flow along ξ together with all of the non-dynamical gunk (e.g. a fixed background

metric) living on M , so we cannot claim to have evolved only the dynamical fields. We

need a way to implement the flow of ξ on phase space—that is, to construct a vector field

Xξ ∈ TP that flows the dynamical fields φ ∈ P by ξ and “ignores” the non-dynamical

fields. Also, not just any diffeomorphism will do: fields can only meaningfully evolve along

directions ξ that are symmetries of the theory: the action must be constructed in such a

way that any non-dynamical fields enter in combinations that remain invariant under ξ-flow.

(For example, if the metric is non-dynamical, its invariance forces ξ to be an isometry.) An

additional technicality is that ξ must respect the boundary conditions: it cannot move the

spatial boundary Γ, so we also require that nµξ
µ = 0, where nµ is the unit normal to Γ.13

Thus field evolution is dictated by the spacetime symmetries respected by the action.

When we ask for a Hamiltonian vector field, we seek to implement evolution along ξ on

phase space; thus our challenge is to construct, for each symmetry generator, a vector field

Xξ ∈ TP that flows only the dynamical fields by ξ. How does one flow? The answer, by

definition, is to take a Lie derivative! Thus the (spacetime) variation of φ under the flow of

the symmetry generator ξ is δξφ = Lξφ. Similarly, the (phase-space) variation of φ under

the flow of the Hamiltonian vector field Xξ is δXξφ = LXξφ = Xξ(φ), where the last equality

follows because φ is a scalar on P . We claim that the correct Hamiltonian vector field is

Xξ =

∫
M

Lξφa
δ

δφa
∈ TP ⇐⇒ Xa

ξ = Lξφa. (3.8)

This vector field is constructed from the basis vectors δ/δφa on configuration space; its

coefficients are Lξφa. This makes precise the notion of “importing” the flow by ξ into phase

12And a Momentonian, an Angletonian, and a Boostonian...
13This requirement is due to considerations involving L. Considerations involving ` introduce extra con-

ditions, which we omit; this is due to considerations involving brevity and sanity.
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3.3 The Hamiltonian 3 COVARIANT PHASE SPACE

space. The dynamics of φ in phase space are determined by the integral curves of Xξ:
14

δXξφ
a = LXξφa = Xξ(φ

a)
!

= Lξφa = δξφ
a. (3.9)

Here we can see the dynamical fields being singled out and flowed. As a consequence, we

find that LXξφa = Lξφa captures the idea that φ transforms covariantly under a symmetry

operation. This equation is short and looks completely impenetrable: it must be important,

and it is imperative that we immediately generalize it beyond recognition. We say that any

spacetime tensor T (φ, χ) is covariant under ξ if LXξT = LξT . It is quite natural to require

the covariance of L and `, whence it follows15 that θ and C are also covariant.

We are in excellent shape: we have a symplectic form and a Hamiltonian vector field. By

symplectic geometry (see §1.3), Hamilton’s equations are guaranteed to hold, so iXξΩ = δHξ

defines the Hamiltonian for ξ-evolution. This is rather useless, however, unless we can

actually tell what Hξ is. Our goal will be to compute iXξΩ and bumble around with the

result until we turn it into δ(stuff); we will declare victory by setting (stuff) = Hξ. Reveling

in the beauty and the treachery of hindsight, we define the Noether current Jξ by

Jξ = iXξθ − iξL, (3.10)

which is a field-theoretic version of H = pq̇ − L. We now proceed to compute iXξΩ:

iXξω
(1)
= iXξδ(θ − dC)

(2)
= LXξθ − δiXξθ − d

(
LXξC − δiXξC

) (3)
=

(3)
= Lξθ − (δJξ + iξδL)− d(stuff)

(4)
= iξdθ + diξθ − δJξ − iξδL− d(stuff)

(5)
=

(5)
= �

��iξδL+ diξθ − δJξ −�
��iξδL− d

(
LXξC − δiXξC

) 6
=

6
= −δJξ − d

(
−iξθ + LXξC − δiXξC

) (7)
=⇒

−iXξΩ
(7)
=

∫
Σ

δJξ +

∫
∂Σ

(
−iξθ + LXξC − δiXξC

) (8)
=

(8)
= δ

∫
Σ

Jξ +

∫
∂Σ

(
−iXξθ + iξdC +���diξC − δiXξC

) (9)
=

(9)
= δ

∫
Σ

Jξ +

∫
∂Σ

(
iξ(dC − θ)− δiXξC

) (10)
= δ

(∫
Σ

Jξ +

∫
∂Σ

(
iξ`− iXξC

))
. (3.11)

Here we did the following: (1) expanded the definition of ω; (2) used Cartan’s formula on P
and that δd = dδ; (3) used the covariance of θ, substituted the definition of Jξ, and got lazy

with the last term; (4) used Cartan’s formula on M ; (5) used the equations of motion via

δL = E ∧ δφ + dθ = dθ; (6) did algebra; (7) recalled the definition of Ω and used Stokes’s

theorem; (8) used the covariance of C on ∂Σ ⊂ Γ and Cartan’s formula on M ; (9) used

Stokes’s theorem and d2 = 0; (10) used (θ + δ`)
∣∣
Γ

= dC and commuted δ past iξ.

14Forbidding notation aside, this is just a souped up form of the equation for integral curves, γ̇ = X(γ).
15This is technical and turns out to almost even be true!
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4 GRAVITY AT LAST

Thus we find that in addition to Jξ, the Hamiltonian contains a boundary term:

Hξ =

∫
Σ

Jξ +

∫
∂Σ

(
iξ`− iXξC

)
. (3.12)

Notice that ` and C are only evaluated on ∂Σ ⊂ Γ, so as promised earlier their extensions

into M do not affect dynamics. This formula for the symmetry charges of a field theory

completes the development of the CPS formalism.

4 Gravity at Last

Having completed the formal development of classical field theory the way it should be done,

let us consider an application to the most beautiful field theory of all: Einstein’s general

theory of relativity. Here we will be brief and omit intermediate calculations, focusing

instead on results and their interpretation. We will also focus on the case of vacuum.

4.1 The Action

Pure gravity begins with a smooth pseudo-Riemannian manifold (M, g) with boundary

(∂M, γ). The action is the sum of the Einstein-Hilbert and Gibbons-Hawking-York terms

and has the metric tensor field g as its dynamical variable:

S = SEH + SGHY =

∫
M

L+

∫
∂M

` =

=
1

16πG

∫
M

(R− 2Λ)ε
M

+
1

8πG

∫
∂M

Kε
∂M
. (4.1)

Here G = GN is Newton’s constant, R = Rµ
µ is the scalar curvature of (M, g), Λ is the

cosmological constant, K = Kµ
µ is the trace of the extrinsic curvature, and ε is the volume

form, either on M or restricted to ∂M . After a computation, we obtain

δL = Eµνδgµν + dΘ, (4.2)

where Eµν are the Einstein field equations

Eµν = − 1

16πG

(
Rµν − 1

2
Rgµν − Λgµν

)
ε
M
. (4.3)

The precipitation of the field equations from S is certainly encouraging. The boundary term

of the variation is given in terms of the “main” part of the symplectic potential:

Θ = iθεM , θµ =
1

16πG

(
gµα∇νδgαν − gαβ∇µδgαβ

)
. (4.4)
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4.2 The Hamiltonian 4 GRAVITY AT LAST

A similar computation yields the variation of the boundary Lagrangian:

δ` =
1

16πG

[
(Kγµν −Kµν)δgµν +

(
gαβnλ∇λ − nα∇β

)
δgαβ −Dµ(γµνnαδgνα)

]
ε
∂M
, (4.5)

where Dµ is the covariant derivative and nµ is the unit normal to ∂M . We throw these

ingredients into a boiling pot and leave the index soup to simmer; when we return, we find

(Θ + δ`)
∣∣∣
Γ

= − 1

16πG
(Kγµν −Kµν)δgµν + dC =

=
1

2
T µνBYδgµν + dC

!
= dC,

C = icε∂M , cµ = − 1

16πG
γµνnαδgνα. (4.6)

Thus gravity presents us with an example where the subtle term dC is nonzero. In

addition, Θ + δ` generates an extra term, which we recognize as the so-called Brown-York

boundary stress tensor T µνBY, contracted with the variation of the metric. This combination

must vanish in order to preserve the well-posedness of the variational problem. Thus we

have two options: we can set δgµν
∣∣
Γ

= 0 (only the pullback to Γ is required, since δg appears

here contracted with boundary quantities). Fixing the metric at Γ in this way corresponds

to Dirichlet boundary conditions; this choice is common in AdS/CFT. Alternatively, we can

set T µνBY = 0, which is analogous to imposing Neumann boundary conditions.

4.2 The Hamiltonian

With this calculation done, we can proceed past the symplectic form to the Hamiltonian for

gravity. We first consider the Noether currnt Jξ. Wald proved that in general relativity,

Jξ = dQξ, Qξ = − 1

16πG
? dξ. (4.7)

Wald called Qξ the “Noether charge,” but in fact Qξ should have been called the Noether

potential, whereas Hξ is the Noether charge.16 Here ξ is our diffeomorphism generator,

regarded as a one-form,17 and ? is the Hodge star. Thus by Stokes’s theorem we have

Hξ =

∫
∂Σ

(
− ? dξ

16πG
+ iξ`− iXξC

)
, (4.8)

where ` and C are given above.

16See a previous footnote complaining about terminology surrounding currents. It would be nice to have
a more solid notion of charges, currents, and potentials and their interrelated dualities.

17Mathematicians would write ξ[, where [ and ] are the musical isomorphisms between TM and T ∗M .
These isomorphisms raise and lower indices, but without the indices.
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4.3 Gauge Symmetry 4 GRAVITY AT LAST

After some more fiddling around in coordinates, we obtain

Hξ = −
∫
∂Σ

τµξνTBY
µν ε∂Σ , (4.9)

where τ is the unit normal to ∂Σ. (We view ∂Σ as the boundary of its past in Γ, whence

ε
∂M

= −τ ∧ε
∂Σ

=⇒ ε
M

= τ ∧n∧ε
∂Σ

.) Therefore Hamiltonian evolution in general relativity

is generated by a boundary term, determined by ξ and the boundary stress tensor.

The point of these manipulations has been to demonstrate that:

• Calculations are not only possible in the CPS formalism, they are readily accessible.

These calculations are “easy” in the sense that they are straightforward coordinate

manipulations of differential forms, and they reduce the messy work of over a century

of GR into a few pages of algebra at most.

• Although we have not shown this explicitly, this formalism quickly recovers all of the

results of the ADM formalism in a manifestly covariant framework. It has also been

used by Wald to interpret the entropy of stationary black holes as the Noether charge

corresponding to the horizon-generating Killing field.

• Nontrivial physics hides on the boundary, so we have been justly rewarded for our care.

4.3 Gauge Symmetry

Perhaps one point that remains contentious is the issue of gauge symmetry. Here I wish

to be extremely pedantic. Upon asking, “what are the gauge symmetries in gravity?” one

is usually met with indistinct muttering, curtly told “diffeomorphisms,” and then promptly

thrown into a firestorm involving first- and second-class constraints, ADM-type language,

Noether’s first and second theorems, the Bianchi identities, asymptotic symmetries, and so

on. It is mind-numbing. Let us quote Appendix B from Carroll’s Spacetime and Geometry :

You will often hear it proclaimed that GR is a “diffeomorphism invariant”

theory. What this means is that, if the universe is represented by a manifold

(M, g) and φ : M −→M is a diffeomorphism, then the sets (M, g) and (M,φ∗g)

represent the same physical situation. . . [these] two purportedly distinct configu-

rations in GR are actually “the same,” related by a diffeomorphism.

Carroll goes on to comment that every physical theory must be diffeomorphism-invariant

in the sense that no coordinate system is preferred to any other; this principle of general

covariance is universal and confers no physical meaning. It is, however, a principal motivation

for CPS methods, which seek to describe field theories without coordinates. Of course this

is not what physicists typically mean by the diffeomorphism invariance of gravity.

A diffeomorphism is a map of smooth manifolds and does not see Riemannian structure:

for instance, the flat unit disk is diffeomorphic to the upper half-sphere, but the former is flat
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4.3 Gauge Symmetry 4 GRAVITY AT LAST

while the latter is curved. It is emphatically not true that diffeomorphisms of a spacetime

preserve its metric; neither g nor R nor SEH +SGHY are invariant under the spacetime group

Diff(M). These objects are curvature invariants, but a generic spacetime has no nontrivial

isometries and therefore g is unique in the class of metrics to which it is equivalent. A

judicious choice of boundary conditions may well produce a variational problem where the

(on-shell) action is invariant under some continuous subgroup of Diff(M), but generically

the boundary conditions will produce a metric that prevents this from happening.18

This is why Carroll pulls back the metric in his definition of physical equivalence: if both

the points of M and the values of its metric are acted on by φ simultaneously, then M flows

together with its own geometry, or “rotates into its own shape.” Now, any diffeomorphism

φ : (M, g) −→ (N, g′) that satisfies g′ = φ∗g is called an isometry, so Carroll has noticed

that every diffeomorphism of M can be upgraded to an isometry by pulling back the metric.

Carroll says that (M, g) and (M,φ∗g) are related by a diffeomorphism, but what he means

is that they are related by an isometry that arises from a diffeomorphism. This does not

conflict with the statement that (M, g) generically has trivial isometry group, because here φ

is an isometry between two distinct spacetimes (with the same underlying smooth manifold),

while the isometry group of a spacetime refers more properly to the autoisometries of a single

spacetime (M, g), where it is required that φ∗g = g.

The language of CPS sheds some light on this situation. First, recall that gauge symmetry

was the reason that Ω̃ was degenerate. We may therefore define the gauge group of a theory

as the group generated by vector fields in the kernel of Ω̃. In gravity, these vector fields

implement the transformation g 7→ φ∗g infinitesimally. These “gauge isometries” are exactly

what we removed in moving from P̃ to P : a rose by any other name would smell as sweet, a

donut gazed upon from another angle would taste as delicious, and Minkowski space viewed

in a boosted frame would appear just as flat.

18Any field theory with a fixed background metric may have an action that respects spacetime symmetries
“a priori,” whether or not the equations of motion are satisfied. But general relativity is the dynamical
theory of spacetime itself: there is no prior geometry, so the action can have spacetime symmetries only after
the Einstein field equations have been solved uniquely for the metric using appropriate boundary data.
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4.3 Gauge Symmetry 4 GRAVITY AT LAST

What, then, should we make of the diffeomorphism charges Hξ? Näıvely, since “GR is

Diff(M)-invariant,” there should be a charge Hξ for every possible diffeomorphism generator

ξ. But we know better; most of these ξ are fake, or rather they generate gauge isometries

that just look at the spacetime from different angles. Once the metric has been uniquely

determined by the field equations and the boundary conditions, we may decide whether

(M, g) has any isometries; if it does, the physical charges Hξ represent the various conserved

quantities in the spacetime. It seems surprising that the charges generating the theory’s

evolution can only be determined after the field evolution is complete and the metric is

known. Perhaps this is due to a misguided understanding of the issues raised here.

In any case, we will conclude as we started: with a single field, which molds and shapes

the spacetime in which it evolves, with a puzzle, and with a smile.
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